CRUX 1.0

by Chris Park

Purpose

 The goal of the CRUX project is to develop programs that search a protein sequence

database for matches to a tandem mass spectrum that the user provides as a query. To achieve this goal, first a quick identification of candidate peptides from a given m/z is needed. Unfortunately the search space for a given proteome is quite large. For instance, the human proteome can result in 550 million peptides from the range of 6 to 50 AA. Thus, determining the right amount to pre-compute and being able to collect the peptides in a reasonable time is the key problem in candidate peptide identification. In the first phase of the CRUX project, the goal was to solve the problems involving space limitations and runtime requirements in identification of candidate peptides.

Figure 1. general layout of CRUX

Procedure

 For the CRUX programs, the requirements were to be able to pre-compute the database with 2GB physical memory, over a time span of 2~3 days and for the database disk size to be under 100GB. The first phase can be divided into 3 separate programs; create-index, generate-peptide, get-ms2-spectrum. The flow diagram can be seen in figure 1. All components were finished in CRUX 1.0 except the comparator which will be added in phase two. The detail description of each program will be explained in the following section, along with some strategies used to meet the CRUX requirements.

 First, get-ms2-spectrum can extract MS-MS spectrum with a particular scan number form a .ms2 file, and output the spectrum along with some summary statistics. The m/z field for each spectrum will then be pass on for candidate peptide identification. The .ms2 file contains multiple spectra, and is the standard output from the mass spectrometer used in Mike McCoss's lab. A typical .ms2 file is about 200MB, thus to ensure a quick search for the spectrum of interest, the program uses a binary search algorithm to promptly find the spectrum with the correct scan number.

 Second, generate-peptide when given a protein fasta sequence or database as input, generates a list of peptides that meet certain criteria (e.g. mass, length, trypticity) as output. One of the main goals other than meeting the CRUX requirements was to make generate-peptide as flexible as possible. Therefore, generate-peptide can take either a fasta file or a database as an input. When using fasta file as an input, the user has the freedom to set the peptide constraint criteria to what every meets the users interest, from different mass, length, mass type or cleavage type to the way the peptides should be sorted. However, since no pre-computed database is used in this process the time required to return the query peptides can vary dramatically and can cause memory shortage problems.

 The flexible but uneven performance of generate-peptide when using a fasta file as input showed a need to develop a more consistent and faster way of producing candidate peptides in spite of the trade off of flexibility. The problem was accomplished by using a pre-computed database as an input. When given a peptide constraint criteria, generate-peptides now simply pareses out peptides in the database that meets the constraint one peptide at a time. By using a pre-computed database, the runtime is now drastically faster and directly proportional to the number peptides the program returns. Also, since the peptides are already in sorted order in the database, memory shortage problems occurring while sorting are eliminated. On the other hand, users are no longer able to freely set the peptide constraint, because some peptide constraints might not be handled by pre-computed database. For instance, if the database was created of length 6 ~ 50 AA, users can not search for peptides with length 60 AA.

 Third, create-index, when given a protein fasta file as input, generates an index of all of its peptides on disk. The database created on disk is then used as an input for generate-peptide. The main difficulties in creating a database is first, dealing with memory shortage problems caused by the large number of peptides, second, reducing the disk size of the database.

 The key strategy to resolve the memory shortage problem was to temporary store peptides in separate bins(file handlers) divided by a certain mass interval, then sort each bin individually. By partitioning the peptides into different mass bins, the total amount of peptides needed to be sorted at one instance reduces dramatically compared to sorting all the peptides together, thus reducing the amount of memory needed to store the peptides.

 Reducing the disk size of the database was accomplished by only storing information that was not already present in the fasta file. For instance, instead of storing the sequence of each individual peptide, only the protein index, the start index and the peptide length are stored, thus when needed, the program can quickly retrieve the sequence from the original fasta file.

Result

The performance of get-ms2-spectrum is shown in table 1. The average size of a .ms2 file is about 200MB, and the search time for a spectrum with certain scan number is under 1 second and the memory usage is negligible.

.ms2 file size
200MB

search time
0.2s

table 1. get-ms2-spectrum performance

The performance for generate-peptide when using fasta file as an input is shown in table 2. As mention before, the runtime and peptide count varies significantly depending on the peptide constraint. Especially, when sorting all tryptic types of peptides the run time and total peptide count increase dramatically. Also, all peptides are need in memory when sorting, thus, ~50million peptides are the maximum count that can be held in memory of 2GB.

E_coli-NCBI-050204.fasta

min-mass: 200.00

max-mass: 2400.00

min-length: 6

max-length: 50

allow missed-cleavages: TRUE

Parameters
sort by mass,

cleavages: tryptic

merge identical peptides

sort by mass,

cleavages: all

merge identical peptides

No sort,

No merging

Cleavages: all

Runtime
0m7.017s

39m2.542s

1m53.404s

Number of peptides
210,316 peptides

20,898,575 peptides

20,898,575 peptides

table 2. generate-peptide performance, fasta file input

Now, when using the pre-computed database for the input instead of the fasta file the performance is significantly improved. In table 3, shows the comparison between using the database and fasta file in one of the more extreme cases.

E_coli-NCBI-050204.fasta

min-mass: 200.00

max-mass: 650.00

min-length: 6

max-length: 50

sort: mass

cleavages: all

allow missed-cleavages: TRUE

merge identical

Input
database
fasta file

Runtime
0m5s

4m20s

Number of peptides
474744
474744

table 2. generate-peptide performance, fasta file input

For, create-index,

Conclusion

 In CRUX 1.0, using the tools of get-ms2-spectrum, create-index, generate-peptide, a user can create a database for all proteomes up to human for all tryptic peptides and tryptic peptides for NR-db in the framework of the CRUX requirements. Then, using the database on disk, generate-peptide can return the peptides that meet the user's protein constraint criteria or the peptides that match m/z that get-ms2-spectrum queries from each mass spectrum.

Fasta file

MS2 file

Pre-compute all possible peptides

create-index

database

get-ms2-spectrum

generate-peptides

comparator

candidate protein

candidate protein

peptides

spectrum

candidate protein

candidate protein

candidate protein

candidate protein

